Serveur d'exploration sur la génomique des pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High-Density Mapping of an Adult-Plant Stripe Rust Resistance Gene YrBai in Wheat Landrace Baidatou Using the Whole Genome DArTseq and SNP Analysis.

Identifieur interne : 000183 ( Main/Exploration ); précédent : 000182; suivant : 000184

High-Density Mapping of an Adult-Plant Stripe Rust Resistance Gene YrBai in Wheat Landrace Baidatou Using the Whole Genome DArTseq and SNP Analysis.

Auteurs : Qiang Li [République populaire de Chine] ; Juan Guo [République populaire de Chine] ; Kaixiang Chao [République populaire de Chine] ; Jinye Yang [République populaire de Chine] ; Weiyun Yue [République populaire de Chine] ; Dongfang Ma [République populaire de Chine] ; Baotong Wang [République populaire de Chine]

Source :

RBID : pubmed:30116253

Abstract

Stripe rust, caused by the biotrophic fungus Puccinia striiformis f. sp. tritici (Pst), is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars is an effective approach for controlling this disease. However, because host resistance genes were easily overcome by new virulent Pst races, there is a continuous demand for identifying new effective wheat stripe rust resistance genes and develop closely linked markers for marker-assisted selection (MAS). Baidatou, an old Chinese wheat landrace, has been grown for several decades in Longnan region, Gansu Province, where stripe rust epidemics are frequent and severe. In our previous study, a single dominant gene YrBai in Baidatou was identified to control the adult-plant resistance (APR) to Chinese prevalent Pst race CYR33. And the gene was located on wheat chromosome 6DS by four polymorphic simple sequence repeat (SSR) and two sequence-related amplified polymorphism (SRAP) markers, with the genetic distances of two closely linked markers 3.6 and 5.4 cM, respectively. To further confirm the APR gene in Baidatou and construct the high-density map for the resistance gene, adult plants of F1, F2, F3, and F5:6 populations derived from the cross Mingxian169/Baidatou and two parents were inoculated with CYR33 at Yangling field, Shaanxi Province during 2014-2015, 2015-2016, and 2016-2017 crop seasons, respectively. The field evaluation results indicated that a single dominant gene confers the APR to Pst race CYR33 in Baidatou. 92 F3 lines and parents were sequenced using DArTseq technology based on wheat GBS1.0 platform, and 31 genetic maps consisted of 2,131 polymorphic SilicoDArT and 952 SNP markers spanning 4,293.94 cM were constructed. Using polymorphic SilicoDArT, SNP markers and infection types (ITs) data of F3 lines, the gene YrBai was further located in 0.8 cM region on wheat chromosome 6D. These closely linked markers developed in this study should be useful for MAS for Baidatou in crop improvement and map-based clone this gene.

DOI: 10.3389/fpls.2018.01120
PubMed: 30116253
PubMed Central: PMC6083057


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">High-Density Mapping of an Adult-Plant Stripe Rust Resistance Gene
<i>YrBai</i>
in Wheat Landrace Baidatou Using the Whole Genome DArTseq and SNP Analysis.</title>
<author>
<name sortKey="Li, Qiang" sort="Li, Qiang" uniqKey="Li Q" first="Qiang" last="Li">Qiang Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Guo, Juan" sort="Guo, Juan" uniqKey="Guo J" first="Juan" last="Guo">Juan Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chao, Kaixiang" sort="Chao, Kaixiang" uniqKey="Chao K" first="Kaixiang" last="Chao">Kaixiang Chao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Jinye" sort="Yang, Jinye" uniqKey="Yang J" first="Jinye" last="Yang">Jinye Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yue, Weiyun" sort="Yue, Weiyun" uniqKey="Yue W" first="Weiyun" last="Yue">Weiyun Yue</name>
<affiliation wicri:level="1">
<nlm:affiliation>Tianshui Institute of Agricultural Sciences, Tianshui, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Tianshui Institute of Agricultural Sciences, Tianshui</wicri:regionArea>
<wicri:noRegion>Tianshui</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ma, Dongfang" sort="Ma, Dongfang" uniqKey="Ma D" first="Dongfang" last="Ma">Dongfang Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agriculture, Yangtze University, Jingzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agriculture, Yangtze University, Jingzhou</wicri:regionArea>
<wicri:noRegion>Jingzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Baotong" sort="Wang, Baotong" uniqKey="Wang B" first="Baotong" last="Wang">Baotong Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30116253</idno>
<idno type="pmid">30116253</idno>
<idno type="doi">10.3389/fpls.2018.01120</idno>
<idno type="pmc">PMC6083057</idno>
<idno type="wicri:Area/Main/Corpus">000171</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000171</idno>
<idno type="wicri:Area/Main/Curation">000171</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000171</idno>
<idno type="wicri:Area/Main/Exploration">000171</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">High-Density Mapping of an Adult-Plant Stripe Rust Resistance Gene
<i>YrBai</i>
in Wheat Landrace Baidatou Using the Whole Genome DArTseq and SNP Analysis.</title>
<author>
<name sortKey="Li, Qiang" sort="Li, Qiang" uniqKey="Li Q" first="Qiang" last="Li">Qiang Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Guo, Juan" sort="Guo, Juan" uniqKey="Guo J" first="Juan" last="Guo">Juan Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chao, Kaixiang" sort="Chao, Kaixiang" uniqKey="Chao K" first="Kaixiang" last="Chao">Kaixiang Chao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Jinye" sort="Yang, Jinye" uniqKey="Yang J" first="Jinye" last="Yang">Jinye Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yue, Weiyun" sort="Yue, Weiyun" uniqKey="Yue W" first="Weiyun" last="Yue">Weiyun Yue</name>
<affiliation wicri:level="1">
<nlm:affiliation>Tianshui Institute of Agricultural Sciences, Tianshui, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Tianshui Institute of Agricultural Sciences, Tianshui</wicri:regionArea>
<wicri:noRegion>Tianshui</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ma, Dongfang" sort="Ma, Dongfang" uniqKey="Ma D" first="Dongfang" last="Ma">Dongfang Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agriculture, Yangtze University, Jingzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agriculture, Yangtze University, Jingzhou</wicri:regionArea>
<wicri:noRegion>Jingzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Baotong" sort="Wang, Baotong" uniqKey="Wang B" first="Baotong" last="Wang">Baotong Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stripe rust, caused by the biotrophic fungus
<i>Puccinia striiformis</i>
f. sp.
<i>tritici</i>
(
<i>Pst</i>
), is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars is an effective approach for controlling this disease. However, because host resistance genes were easily overcome by new virulent
<i>Pst</i>
races, there is a continuous demand for identifying new effective wheat stripe rust resistance genes and develop closely linked markers for marker-assisted selection (MAS). Baidatou, an old Chinese wheat landrace, has been grown for several decades in Longnan region, Gansu Province, where stripe rust epidemics are frequent and severe. In our previous study, a single dominant gene
<i>YrBai</i>
in Baidatou was identified to control the adult-plant resistance (APR) to Chinese prevalent
<i>Pst</i>
race CYR33. And the gene was located on wheat chromosome 6DS by four polymorphic simple sequence repeat (SSR) and two sequence-related amplified polymorphism (SRAP) markers, with the genetic distances of two closely linked markers 3.6 and 5.4 cM, respectively. To further confirm the APR gene in Baidatou and construct the high-density map for the resistance gene, adult plants of F
<sub>1</sub>
, F
<sub>2</sub>
, F
<sub>3</sub>
, and F
<sub>5:6</sub>
populations derived from the cross Mingxian169/Baidatou and two parents were inoculated with CYR33 at Yangling field, Shaanxi Province during 2014-2015, 2015-2016, and 2016-2017 crop seasons, respectively. The field evaluation results indicated that a single dominant gene confers the APR to
<i>Pst</i>
race CYR33 in Baidatou. 92 F
<sub>3</sub>
lines and parents were sequenced using DArTseq technology based on wheat GBS1.0 platform, and 31 genetic maps consisted of 2,131 polymorphic SilicoDArT and 952 SNP markers spanning 4,293.94 cM were constructed. Using polymorphic SilicoDArT, SNP markers and infection types (ITs) data of F
<sub>3</sub>
lines, the gene
<i>YrBai</i>
was further located in 0.8 cM region on wheat chromosome 6D. These closely linked markers developed in this study should be useful for MAS for Baidatou in crop improvement and map-based clone this gene.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30116253</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>High-Density Mapping of an Adult-Plant Stripe Rust Resistance Gene
<i>YrBai</i>
in Wheat Landrace Baidatou Using the Whole Genome DArTseq and SNP Analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>1120</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2018.01120</ELocationID>
<Abstract>
<AbstractText>Stripe rust, caused by the biotrophic fungus
<i>Puccinia striiformis</i>
f. sp.
<i>tritici</i>
(
<i>Pst</i>
), is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars is an effective approach for controlling this disease. However, because host resistance genes were easily overcome by new virulent
<i>Pst</i>
races, there is a continuous demand for identifying new effective wheat stripe rust resistance genes and develop closely linked markers for marker-assisted selection (MAS). Baidatou, an old Chinese wheat landrace, has been grown for several decades in Longnan region, Gansu Province, where stripe rust epidemics are frequent and severe. In our previous study, a single dominant gene
<i>YrBai</i>
in Baidatou was identified to control the adult-plant resistance (APR) to Chinese prevalent
<i>Pst</i>
race CYR33. And the gene was located on wheat chromosome 6DS by four polymorphic simple sequence repeat (SSR) and two sequence-related amplified polymorphism (SRAP) markers, with the genetic distances of two closely linked markers 3.6 and 5.4 cM, respectively. To further confirm the APR gene in Baidatou and construct the high-density map for the resistance gene, adult plants of F
<sub>1</sub>
, F
<sub>2</sub>
, F
<sub>3</sub>
, and F
<sub>5:6</sub>
populations derived from the cross Mingxian169/Baidatou and two parents were inoculated with CYR33 at Yangling field, Shaanxi Province during 2014-2015, 2015-2016, and 2016-2017 crop seasons, respectively. The field evaluation results indicated that a single dominant gene confers the APR to
<i>Pst</i>
race CYR33 in Baidatou. 92 F
<sub>3</sub>
lines and parents were sequenced using DArTseq technology based on wheat GBS1.0 platform, and 31 genetic maps consisted of 2,131 polymorphic SilicoDArT and 952 SNP markers spanning 4,293.94 cM were constructed. Using polymorphic SilicoDArT, SNP markers and infection types (ITs) data of F
<sub>3</sub>
lines, the gene
<i>YrBai</i>
was further located in 0.8 cM region on wheat chromosome 6D. These closely linked markers developed in this study should be useful for MAS for Baidatou in crop improvement and map-based clone this gene.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Qiang</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Juan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chao</LastName>
<ForeName>Kaixiang</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Jinye</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yue</LastName>
<ForeName>Weiyun</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Tianshui Institute of Agricultural Sciences, Tianshui, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Dongfang</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>College of Agriculture, Yangtze University, Jingzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Baotong</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>08</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">DArTseq</Keyword>
<Keyword MajorTopicYN="N">Puccinia striiformis f. sp. tritici</Keyword>
<Keyword MajorTopicYN="N">adult-plant resistance</Keyword>
<Keyword MajorTopicYN="N">molecular mapping</Keyword>
<Keyword MajorTopicYN="N">wheat landrace</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>10</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>07</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>8</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30116253</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2018.01120</ArticleId>
<ArticleId IdType="pmc">PMC6083057</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Phytopathology. 2010 Apr;100(4):313-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20205534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2016 Sep;107(5):463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2016 Jan;129(1):65-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26433828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2017 Oct;130(10):2191-2201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28711956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2017 Oct;130(10):2127-2137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28725946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2009 Oct;119(6):1119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19644666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 May;114(7):1277-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17318493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jul 09;9(7):e101673</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25006804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 1993 Jun;36(3):476-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18470001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euphytica. 2011 May 1;179(1):69-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26900170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2016 Aug 4;54:303-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27296137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2018 Jun;108(6):737-747</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29303685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>3 Biotech. 2016 Jun;6(1):76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28330146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2016 Oct;106(10):1186-1193</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27050567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 May 19;12(5):e0177898</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28542451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2017 Apr;130(4):777-793</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28255670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2002 Jan-Feb;93(1):77-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12011185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Dec;81(24):8014-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6096873</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Li, Qiang" sort="Li, Qiang" uniqKey="Li Q" first="Qiang" last="Li">Qiang Li</name>
</noRegion>
<name sortKey="Chao, Kaixiang" sort="Chao, Kaixiang" uniqKey="Chao K" first="Kaixiang" last="Chao">Kaixiang Chao</name>
<name sortKey="Guo, Juan" sort="Guo, Juan" uniqKey="Guo J" first="Juan" last="Guo">Juan Guo</name>
<name sortKey="Ma, Dongfang" sort="Ma, Dongfang" uniqKey="Ma D" first="Dongfang" last="Ma">Dongfang Ma</name>
<name sortKey="Wang, Baotong" sort="Wang, Baotong" uniqKey="Wang B" first="Baotong" last="Wang">Baotong Wang</name>
<name sortKey="Yang, Jinye" sort="Yang, Jinye" uniqKey="Yang J" first="Jinye" last="Yang">Jinye Yang</name>
<name sortKey="Yue, Weiyun" sort="Yue, Weiyun" uniqKey="Yue W" first="Weiyun" last="Yue">Weiyun Yue</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiGenomicsV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000183 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000183 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiGenomicsV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30116253
   |texte=   High-Density Mapping of an Adult-Plant Stripe Rust Resistance Gene YrBai in Wheat Landrace Baidatou Using the Whole Genome DArTseq and SNP Analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30116253" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiGenomicsV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 18:06:51 2020. Site generation: Fri Nov 20 18:08:25 2020